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Abstract. Let A(n, d) denote the maximum number of codewords in a binary
code of length n and minimum Hamming distance d. Upper and lower bounds
on A(n, d) have been a subject for extensive research. In this paper we examine
upper bounds on A(n, d) as a special case of bounds on the size of subsets in
metric association scheme. We will first obtain general bounds on the size
of such subsets, apply these bounds to the binary Hamming scheme, and use
linear programming to further improve the bounds. We show that the sphere
packing bound and the Johnson bound as well as other bounds are special cases
of one of the bounds obtained from association schemes. Specific bounds on
A(n, d) as well as on the sizes of constant weight codes are also discussed.

1. Introduction

Let A(n, d) denote the maximum number of codewords in a binary code of length
n and minimum Hamming distance d. A(n, d) is a basic quantity in coding theory.
Lower bounds on A(n, d) are usually obtained by constructions. For a survey on
the known lower bounds the reader is referred to [12]. For a new asymptotic lower
bound and a survey of previous results the reader is referred to [9].

In this work we consider upper bounds on A(n, d). The most basic upper bound
on A(n, d), d = 2e + 1 or d = 2e + 2, is the sphere packing bound, also known as
the Hamming bound:

(1) A(n, d) ≤
2n

∑e
i=0

(

n
i

) .

2000 Mathematics Subject Classification: Primary: 94B65; Secondary: 05E30.
Key words and phrases: Bounds on codes, association schemes, linear programming.
The research of the first and the second author was supported in part by grant no. 263/04 of

the Israeli Science Foundation. The research of the third author was supported in part by grant
no. 533/03 of the Israeli Science Foundation.

173 c©2007 AIMS-SDU



174 Beniamin Mounits, Tuvi Etzion and Simon Litsyn

Johnson [10] has improved the sphere packing bound. In his theorem, Johnson used
the quantity A(n, d, w), which is the maximum number of codewords in a binary
code of length n, constant weight w, and minimum distance d:

(2) A(n, 2e + 1) ≤
2n

∑e
i=0

(

n
i

)

+
( n

e+1)−(2e+1
e+1 )A(n,2e+2,2e+1)

A(n,2e+2,e+1)

.

In [15] a new bound was obtained:

(3) A(n, 2e + 1) ≤
2n

∑e
i=0

(

n
i

)

+
(n+1

e+2)−(2e+2
e+2 )A(n+1,2e+2,2e+2)

A(n+1,2e+2,e+2)

.

This bound is at least as good as the Johnson bound for all values of n and d, and
for each d there are infinitely many values of n for which the new bound is better
than the Johnson bound. This bound will be called the improved Johnson bound.
Considering distance 2e+1 in the last two bounds is not restrictive as we have that
A(n + 1, 2e + 2) = A(n, 2e + 1). This result is proved by considering the extended
code, i.e., the code obtained by adding a parity check to each codeword. If an even
parity is added, then the resulting code is an even weight code, i.e., a code whose
codewords have even weight.

For given specific values of n and d, usually, to obtain a good upper bound on
A(n, d) one has to use linear programming [5, 3, 4, 15, 17].

In this paper we will use a more general approach to obtain bounds on A(n, d).
We will first obtain general bounds on the sizes of codes in any metric association
scheme. We will translate these bounds to the binary Hamming scheme and ob-
tain specific bounds for the binary Hamming scheme. These bounds depend on
the distance distribution of the code and we optimize the bound by using linear
programming.

The rest of the paper is organized as follows. In Section 2 we give the necessary
background needed in association schemes. In Section 3 we present our main theo-
rem that the inner distribution of the holes of the code is uniquely determined by
the inner distribution of the code. This will lead to a sequence of upper bounds
on subsets of the association scheme. We show that the sphere packing bound, the
Johnson bound, as well as other bounds are special cases of one of these bounds.
In Section 4 we derive some values on the number of holes with certain properties
in the binary Hamming scheme . We combine these values with our main theorem
to obtain some new upper bounds in the binary Hamming scheme. These bounds
include some values from the inner distribution of the code. To further improve
these bounds we use linear programming, optimizing the variables from the inner
distribution. In Section 5 we summarize the new explicit bounds on A(n, d) and
A(n, d, w).

2. Association schemes, codes, and holes

An association scheme with n classes consists of a finite set X of v points together
with n + 1 relations
R0, R1, . . . , Rn defined on X which satisfy:

• Each Ri is symmetric, i.e., (x, y) ∈ Ri implies (y, x) ∈ Ri.
• For every x, y ∈ X , (x, y) ∈ Ri for exactly one i.
• R0 = {(x, x) : x ∈ X} is the identity relation.
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• If (x, y) ∈ Rk, then the number of z ∈ X such that (x, z) ∈ Ri and (y, z) ∈ Rj

is a constant pk
i,j (called intersection number) depending on i, j, k but not on

the particular choice of x and y.

Let Γ be a connected graph with v vertices, with no loops or multiple edges, and
let X be the set of vertices. The distance d(x, y) between x, y ∈ X is the number
of edges in the shortest path between x and y. The maximum distance, say n,
between any two vertices is called the diameter of the graph. The graph Γ is called
distance-regular if, for any x, y ∈ X with d(x, y) = k, the number of z ∈ X such
that d(x, z) = i and d(y, z) = j is a constant pk

i,j independent of the choice of x and
y. Clearly, we obtain an association scheme with n classes from a distance-regular
graph with diameter n. This scheme is called a metric scheme.

We also denote p0
i,i = vi and |X | = v; vi is called the valency of Ri and it is the

number of points in X at distance i from any point x ∈ X . It is easy to verify that,
for any association scheme, the following conditions hold:

(4) pi
i,0 = 1, pj

i,0 = 0 and p0
i,j = 0 for i 6= j.

(5)

n
∑

j=0

pk
i,j = vi and pk

i,jvk = pi
k,jvi.

Let (X,R) be a metric association scheme with a distance function d(·, ·) defined
on a set X , and a set R with n relations, i.e. R = {R0, R1, · · · , Rn}, where
Ri = {(x, y) : x, y ∈ X, d(x, y) = i}. By the triangle inequality we have that

(6) pk
i,j = 0, if i + j < k or i + k < j or j + k < i.

A nonempty subset C of X is called a code. Let d be the minimum distance of C,
i.e., d = minc1,c2∈C d(c1, c2). C is called an e-code for e = ⌊d−1

2 ⌋, as it is capable of
correcting e errors; C is also called an (n, d) code. For a point x ∈ X , d(x, C) is the
distance between x and C, i.e., d(x, C) = minc∈C d(x, c). The inner distribution of
C is the (n + 1)-tuple of rational numbers {A0, A1, · · · , An}, where

Ai =
1

|C|
|Ri ∩ (C × C)|

is the average number of codewords which are at distance i from any given codeword
c ∈ C. It is clear that A0 = 1 and Ai ≥ 0, i = 1, 2, · · · , n. For any given c ∈ C,
Ai(c) denotes the number of codewords at distance i from c. Thus we have another
useful expression for Ai:

(7)
∑

c∈C

Ai(c) = |Ri ∩ (C × C)| = |C|Ai .

The e-sphere about a point x consists of all points which are within distance e
from x. These points are said to be covered by x. The volume of such a sphere,
V (n, e), is the size of the sphere, i.e.,

V (n, e) =

e
∑

i=0

vi .

For a given e-code C, we define the set of holes H of C to be H = {h ∈ X :
d(h, C) > e}. We will be interested in the case e ≥ 1. The non-normalized inner
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distribution of H is the (n + 1)-tuple of rational numbers {L0, L1, · · · , Ln}, where

Li = |Ri ∩ (H × H)|.

For any given h ∈ H , Li(h) denotes the number of holes at distance i from h.
We can partition X into two subsets H and E, where E = {x ∈ X : 0 ≤

d(x, C) ≤ e} and |E| = |C|
∑e

j=0 vj . Thus, we have

(8) |H | = |X \ E| = v − |C|
e
∑

j=0

vj = v − |C|V (n, e).

3. Upper bounds derived from inner distribution

Let C be an e-code in a metric association scheme (X,R). In this section we
show a method to obtain upper bounds on the size of C. We will prove that the
sphere packing bound, the Johnson bound, and the improved Johnson bound, are
obtained by the new method. Moreover, this method can be applied with various
sets of parameters. Each parameter set will lead to a new bound. Unfortunately,
some of the bounds are weak, but fortunately some bounds can be used to obtain
new bounds on the sizes of codes in some schemes. The bounds are obtained by
computing the sum

∑n
i=0 qiLi, where {qi} is any sequence of real numbers, in two

different ways. Different bounds can be obtained by using different sequences.

3.1. The main theorem. In the first theorem we will prove that the inner dis-
tribution of the holes is uniquely determined by the inner distribution of C. Each
value Li, 0 ≤ i ≤ n, is determined by the valency of the relation Ri, the size of X ,
the size of C, the size of an e-sphere, the inner distribution of the code, and the
intersection numbers of the scheme.

Theorem 3.1. If C is an e-code of X with inner distribution {Ai}
n
i=0, then for

each i, 0 ≤ i ≤ n,

Li = vi (v − 2|C|V (n, e)) + |C|U(C, i) ,

where

(9) U(C, i) =

n
∑

k=0

n
∑

ℓ=0

e
∑

m=0

e
∑

j=0

pk
ℓ,mpℓ

i,jAk .

Proof. The number of ordered pairs of points from X at distance i is

(10) |Ri ∩ (X × X)| =
∑

x∈X

vi = vvi.

Since X can be partitioned into two subsets E and H , it follows that X ×X can
be partitioned into two subsets E × E and X × H ∪ H × X .

Therefore, we have an alternative way to compute |Ri ∩ (X × X)|.

• For a given k, 0 ≤ k ≤ n, let c, c′ ∈ C be two codewords such that d(c, c′) = k.
First, we count the number of pairs (x, x′) such that d(c, x) = m, d(c′, x′) = j,
0 ≤ m, j ≤ e, and d(x, x′) = i. Clearly, x, x′ ∈ E. For a given ℓ, 0 ≤ ℓ ≤ n,
the number of points x ∈ E such that d(c, x) = m and d(c′, x) = ℓ is pk

ℓ,m.

The number of points x′ ∈ E such that d(x, x′) = i and d(c′, x′) = j is pℓ
i,j .

Hence, the number of pairs (x, x′) is
∑n

ℓ=0 pk
ℓ,mpℓ

i,j . Thus, the number of pairs

(x, x′) such that 0 ≤ d(c, x) ≤ e and 0 ≤ d(c′, x′) ≤ e is
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e
∑

m=0

e
∑

j=0

n
∑

ℓ=0

pk
ℓ,mpℓ

i,j .

Summing on all pairs c, c′ ∈ C, and by using (7) we obtain

|Ri ∩ (E × E)| =
∑

c∈C

n
∑

k=0

Ak(c)
e
∑

m=0

e
∑

j=0

n
∑

ℓ=0

pk
ℓ,mpℓ

i,j = |C|
n
∑

k=0

n
∑

ℓ=0

e
∑

m=0

e
∑

j=0

pk
ℓ,mpℓ

i,jAk .(11)

• One can easily verify that

|{(h, x) ∈ H × X : d(h, x) = i}| =
∑

h∈H

vi

and for any given sets A, B, D such that B ⊆ A

|D ∩ (A × B ∪ B × A)| = |D ∩ (A × B)| + |D ∩ (B × A)| − |D ∩ (B × B)|.

Therefore,

(12) |Ri ∩ (X × H ∪ H × X)| = 2
∑

h∈H

vi − Li = 2|H |vi − Li.

From (10)-(12) it follows that

vvi = |C|

n
∑

k=0

n
∑

ℓ=0

e
∑

m=0

e
∑

j=0

pk
ℓ,mpℓ

i,jAk + 2|H |vi − Li.

The claim of the theorem follows after substituting (8) in |H | and simple algebraic
manipulations.

Corollary 1. Let C be an e-code with inner distribution {Ai}
n
i=0 and let {qi}

n
i=0

be a sequence of real numbers. Then

(13)

n
∑

i=0

qiLi = v

n
∑

i=0

qivi + |C|

n
∑

i=0

qi (U(C, i) − 2V (n, e)vi) .

where U(C, i) is given by (9).

3.2. Generalization of the known bounds. First, we will prove that some
of the well known bounds in the binary Hamming scheme can be obtained from
Corollary 1. Moreover, these bounds are now generalized to any metric association
scheme as our corollary is not specific to any scheme. First, we will give some
general results. For a hole h let NC(h, C, k) be the number of codewords in C at
distance k from h.

Lemma 3.2. For each i, 0 ≤ i ≤ n, the following holds

Li =
∑

h∈H



vi −

e+i
∑

k=e+1

NC(h, C, k)

e
∑

j=0

pk
i,j



 .

Proof. The number of points at distance i from hole h in X is vi. The number

of points at distance i from h in E is
∑e+i

k=e+1 NC(h, C, k)
∑e

j=0 pk
i,j . Hence, the

number of points at distance i from h in H is vi−
∑e+i

k=e+1 NC(h, C, k)
∑e

j=0 pk
i,j .
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Given a sequence {qi}, by using Lemma 3.2 and (8) we estimate
∑n

i=0 qiLi in
the following way.

n
∑

i=0

qiLi =

n
∑

i=0

qi

∑

h∈H



vi −

e+i
∑

k=e+1

NC(h, C, k)

e
∑

j=0

pk
i,j





=
∑

h∈H





n
∑

i=0

qivi −

n
∑

i=0

qi

e+i
∑

k=e+1

NC(h, C, k)

e
∑

j=0

pk
i,j





≥ (v − |C|V (n, e))

(

n
∑

i=0

qivi − ξ(C, {qi})

)

,(14)

where

(15) ξ(C, {qi}) = max
h∈H







n
∑

i=0

qi

e+i
∑

k=e+1

NC(h, C, k)

e
∑

j=0

pk
i,j







.

By combining (13) and (14) we obtain

Theorem 3.3. If C is an e-code with inner distribution {Ai}
n
i=0, then

(16) |C| ≤
v

V (n, e) +
∑

n
i=0 qi(V (n,e)vi−U(C,i))

ξ(C,{qi})

provided ξ(C, {qi}) is not zero, where ξ(C, {qi}) is given by (15) and U(C, i) is given
by (9).

Lemma 3.4. For any given e-code C with inner distribution {Ai}
n
i=0,

U(C, 0) = V (n, e) ,

U(C, 1) = V (n, e)v1 − pe+1
1,e ve+1 + pe+1

1,e p2e+1
e+1,eA2e+1 ,(17)

U(C, 2) = V (n, e)v2 − (pe+1
2,e−1 + pe+1

2,e )ve+1 − pe+2
2,e ve+2

+
(

p2e+1
e+1,e

(

pe+1
2,e−1 + pe+1

2,e

)

+
(

p2e+1
e+2,e−1 + p2e+1

e+2,e

)

pe+2
2,e

)

A2e+1

+ p2e+2
e+2,ep

e+2
2,e A2e+2 .(18)

Proof. Since A0 = 1, Ak = 0 for 1 ≤ k ≤ 2e, the claim follows by evaluating (9)
using (4)-(6).

3.2.1. The sphere packing bound. The sphere packing bound is given in the following
theorem.

Theorem 3.5. For any given e-code C,

|C| ≤
v

V (n, e)
.

Proof. The result is obtained by taking the sequence q0 = 1 and qi = 0 for 1 ≤ i ≤ n
in Corollary 1.
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3.2.2. The Johnson bound. The Johnson bound is an improvement of the sphere
packing bound. It was given in [10] for the binary Hamming scheme and in [7]
for general distance regular graphs. The Johnson bound is given in the following
theorem.

Theorem 3.6. For any given (n, 2e + 1) code C with inner distribution {Ai}
n
i=0,

(19) |C| ≤
v

V (n, e) +
ve+1−p2e+1

e+1,e
A2e+1

maxh∈H{NC(h,C,e+1)}

.

Proof. Let q0 = 0, q1 = 1 and qi = 0 for 2 ≤ i ≤ n. Since in (15), qi 6= 0 only for
i = 1 and pk

i,j 6= 0 only for i = 1, j = e, and k = e + 1, by (6), we have

(20) ξ(C, {qi}) = pe+1
1,e max

h∈H
{NC(h, C, e + 1)} .

The theorem is obtained by substituting (17) and (20) in (16).

For the binary Hamming scheme, by substituting

A2e+1 ≤ A(n, 2e + 2, 2e + 1)

and
max
h∈H

{NC(h, C, e + 1)} ≤ A(n, 2e + 2, e + 1)

in (19) we obtain the Johnson bound (2).

3.2.3. Improved Johnson bound. The improved Johnson bound is given in the fol-
lowing theorem.

Theorem 3.7. For any given (n, 2e + 1) code C with inner distribution {Ai}
n
i=0,

(21) |C| ≤
v

V (n, e) + ve+1+ve+2−γ
maxh∈H{NC(h,C,e+1)+NC(h,C,e+2)}

,

where

γ = (p2e+1
e+1,e + p2e+1

e+2,e−1 + p2e+1
e+2,e)A2e+1 + p2e+2

e+2,eA2e+2 .

Proof. Let q0 = 0, q1 =
pe+2
2,e −pe+1

2,e−1−pe+1
2,e

pe+1
1,e

, q2 = 1 and qi = 0 for 3 ≤ i ≤ n. Again,

since only q1 and q2 are nonzero, by (15) we have

(22) ξ(C, {qi}) = pe+2
2,e max

h∈H
{NC(h, C, e + 1) + NC(h, C, e + 2)} .

The theorem is obtained by substituting (17), (18), and (22) in (16).

For the binary Hamming scheme we have γ =
(

2e+2
e+2

)

(A2e+1 + A2e+2), ve+1 +

ve+2 =
(

n+1
e+2

)

, and maxh∈H {NC(h, C, e + 1) + NC(h, C, e + 2)} ≤ A(n + 1, 2e +

2, e + 2). By substituting in (21) we obtain

|C| ≤
2n

∑e
i=0

(

n
i

)

+
(n+1

e+2)−(2e+2
e+2 )(A2e+1+A2e+2)

A(n+1,2e+2,e+2)

.(23)

By substituting A2e+1 + A2e+2 ≤ A(n + 1, 2e + 2, 2e + 2) in (23) we obtain the
improved Johnson bound (3).
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4. New bounds in the binary Hamming scheme

In this section we will apply Corollary 1 to obtain new bounds in the binary
Hamming scheme. In any sequence {qi} that we have used for the known bounds
the nonzero elements had small indices. Now, we will use sequences in which the
nonzero elements have large indices. We will obtain new bounds on the size of a
code which depend on a few coefficients from inner distribution of the code. For a
more explicit analytic bound we will use linear programming to obtain bounds on
these coefficients. The “code” which attains the linear programming bound on these
coefficients might be smaller or larger than the explicit analytic bound. If this is the
case then we will try to improve the analytic bound by using linear programming
again with an additional constraint.

The computations that will be done in this section involve computing some of
the intersection numbers in the binary Hamming scheme. It is easy to see that, for
the binary Hamming scheme,

pk
i,j =











(

k
i−j+k

2

)( n−k
i+j−k

2

)

if i + j − k is even,

0 if i + j − k is odd.

4.1. Bounds derived from inner distribution. In this subsection we will use
Corollary 1 with sequences whose nonzero elements have large indices. First, for
a given t, 0 ≤ t ≤ e, we will compute the number of holes, for which there is a
codeword at distance n − t. Let

Kn−t = {h ∈ H : NC(h, C, n − t) = 1}

be the set of holes, for which there is a codeword at distance n − t. Note that, for
any hole h ∈ H , we have NC(h, C, n − t) ∈ {0, 1}, where 0 ≤ t ≤ e.

Lemma 4.1. For each t, 0 ≤ t ≤ e,

(24) |Kn−t| = |C|



vn−t −

e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j



 .

Proof. The number of vectors at distance n− t from a codeword c is vn−t. Similar

to the proof of Lemma 3.2,
∑e+t

i=0 An−i(c)
∑e

j=0 pn−i
n−t,j is the number of vectors in

E at distance n − t from c. Hence,

|Kn−t| =
∑

c∈C



vn−t −
e+t
∑

i=0

An−i(c)
e
∑

j=0

pn−i
n−t,j



 = |C|



vn−t −
e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j



 .

Theorem 4.2. If C is an (n, 2e + 1) code with inner distribution {Ai}
n
i=0 then

|C| ≤
2n

2
∑e

i=0

(

n
i

)

+
(n

e)(
n−e
e+1 −⌊n−e

e+1 ⌋)
⌊ n

e+1 ⌋
− S1(e,n)

(e+1)⌊ n
e+1 ⌋

,
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where

S1(e, n) =

n
∑

i=n−1

U(C, i) − (e + 1)

(

n + 1

e + 1
− ⌊

n

e + 1
⌋

) e−1
∑

t=0

e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j

− (e + 1)

(

⌊
n + 1

e + 1
⌋ − ⌊

n

e + 1
⌋

) 2e
∑

i=0

An−i

e
∑

j=0

pn−i
n−e,j ,

where U(C, n − 1) and U(C, n) are given by (9).

Proof. For any given hole h we distinguish between three mutually exclusive cases:

1. If there exists a codeword c such that n − (e − 1) ≤ d(c, h) ≤ n then

Ln−1(h) + Ln(h) = 0 .(25)

2. Assume there exists a codeword c such that d(c, h) = n − e. Without loss
of generality we can assume that h is the all-ones vector and hence c is a
codeword with weight e. Therefore, the all-zeroes vector is not a hole and
there are at most n− e potential holes with weight one. These potential holes
can be covered only by codewords with weight e+1. On these n−e coordinates
there are at most A(n− e, 2e+2, e+1) = ⌊n−e

e+1 ⌋ codewords with weight e+1,
each one covers exactly e + 1 potential holes with weight one. Therefore,

Ln−1(h) + Ln(h) ≥ n − e − (e + 1)⌊
n − e

e + 1
⌋ .(26)

3. If there is no codeword c such that n− e ≤ d(c, h) ≤ n then similarly we have

(27) Ln−1(h)+Ln(h) ≥ n+1− (e+1)A(n, 2e+2, e+1) = n+1− (e+1)⌊
n

e + 1
⌋.

We sum (25), (26), and (27), over all the holes and use (24) to obtain

Ln−1 + Ln =
∑

h∈H

(Ln−1(h) + Ln(h)) ≥
e−1
∑

t=0

|Kn−t| · 0 + |Kn−e| ·
(

n − e − (e + 1)⌊n − e

e + 1
⌋
)

+

(

|H| −
e
∑

t=0

|Kn−t|
)

·
(

n + 1 − (e + 1)⌊ n

e + 1
⌋
)

= |C|





(n

e

)

−
2e
∑

i=0

An−i

e
∑

j=0

pn−i
n−e,j





(

n − e − (e + 1)⌊n − e

e + 1
⌋
)

+



2n − |C|V (n, e) − |C|
e
∑

t=0





(n

t

)

−
e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j









(

n + 1 − (e + 1)⌊ n

e + 1
⌋
)

.

By Corollary 1, we have

Ln−1 + Ln = 2n(n + 1) + |C| (U(C, n − 1) + U(C, n) − 2V (n, e)(n + 1))) ,

and hence

2n(e + 1)⌊ n

e + 1
⌋ ≥ |C|(2V (n, e)(n + 1) − U(C, n − 1) − U(C, n) +

(n

e

)

(

n − e − (e + 1)⌊n − e

e + 1
⌋
)

−2V (n, e)

(

n + 1 − (e + 1)⌊ n

e + 1
⌋
)

−
2e
∑

i=0

An−i

e
∑

j=0

pn−i
n−e,j

(

n − e − (e + 1)⌊n − e

e + 1
⌋
)

+
e
∑

t=0

e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j

(

n + 1 − (e + 1)⌊ n

e + 1
⌋
)

)
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= |C|(2V (n, e)(e + 1)⌊ n

e + 1
⌋ + (e + 1)

(n

e

)

(

n − e

e + 1
− ⌊n − e

e + 1
⌋
)

−U(C, n − 1) − U(C, n) +

e−1
∑

t=0

e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j

(

n + 1

e + 1
− ⌊ n

e + 1
⌋
)

(e + 1)

+
2e
∑

i=0

An−i

e
∑

j=0

pn−i
n−e,j

(

e + 1 + (e + 1)⌊n − e

e + 1
⌋ − (e + 1)⌊ n

e + 1
⌋
)

).

The theorem follows now by elementary algebraic manipulation on the last formula.

Corollary 2. If n is even and C is an (n, 3) code with inner distribution {Ai}
n
i=0

then

|C| ≤
2n

2n + 3 − S1(1,n)
n

,

where

S1(1, n) = 6(An−3 + An−2) + 3n(An−1 + An) .

Theorem 4.3. If C is an (n, 2e + 1) code with inner distribution {Ai}
n
i=0 then

|C| ≤
2n

2
∑e

i=0

(

n
i

)

+ φ − S2(e,n)

(e+2
2 )A(n+1,2e+2,e+2)

,

where

φ =

(

n+1
e

) ((

n+1−e
2

)

−
(

e+2
2

)

A(n + 1 − e, 2e + 2, e + 2)
)

(

e+2
2

)

A(n + 1, 2e + 2, e + 2)
,

S2(e, n) =
n
∑

i=n−2

U(C, i) −
(

V (n, 2) −
(e + 2

2

)

A(n + 1, 2e + 2, e + 2)

) e−2
∑

t=0

e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j

−
(

1 + e(n − e) +
(e + 1

2

)

−
(e + 2

2

)

(A(n + 1, 2e + 2, e + 2) − A(n + 1 − e, 2e + 2, e + 2))

)

×
e
∑

t=e−1

e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j ,

where U(C, n − 2), U(C, n − 1), and U(C, n) are given by (9).

Proof. For any given hole h we distinguish between four mutually exclusive cases:

1. If there exists a codeword c ∈ C such that n − (e − 2) ≤ d(c, h) ≤ n then

Ln−2(h) + Ln−1(h) + Ln(h) = 0 .(28)

2. If there exists a codeword c ∈ C such that d(c, h) = n − e + 1 then

(29) Ln−2(h)+Ln−1(h)+Ln(h) ≥

(

n − e + 1

2

)

−

(

e + 2

2

)

A(n−e+1, 2e+2, e+2).

3. Assume there exists a codeword c ∈ C such that d(c, h) = n − e. Without
loss of generality we can assume that h is the all-ones vector and hence c is
a codeword with weight e. Therefore, the all-zeroes vector is not a hole and
there are at most n − e potential holes with weight one and

(

n−e
2

)

potential

holes with weight two. A codeword with weight e + 2 covers
(

e+2
2

)

potential
holes with weight two. There are NC(h, C, n − (e + 2)) such codewords and
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they cover
(

e+2
2

)

NC(h, C, n − (e + 2)) potential holes. Similarly codewords

with weight e + 1 cover (e + 1 +
(

e+1
2

)

)NC(h, C, n − (e + 1)) potential holes
with weight less or equal two. Note, that if c′ ∈ C has weight e + 1 or e + 2
then its support is disjoint from the support of c since d(c, c′) > 2e. Therefore,
NC(h, C, n−e−1)+NC(h, C, n−e−2) ≤ A(n−e+1, 2e+2, e+2). Since no
other codewords can cover holes with weight less or equal two, we have that

(30) Ln−2(h)+Ln−1(h)+Ln(h) ≥

(

n − e + 1

2

)

−

(

e + 2

2

)

A(n−e+1, 2e+2, e+2) .

4. If there is no codeword c such that n− e ≤ d(c, h) ≤ n then similarly we have

(31) Ln−2(h) + Ln−1(h) + Ln(h) ≥ 1 +

(

n + 1

2

)

−

(

e + 2

2

)

A(n + 1, 2e + 2, e + 2).

Similar to the proof of Theorem 4.2 we sum (28), (29), (30), and (31), over all
the holes, use (24) to obtain

Ln−2 + Ln−1 + Ln =
∑

h∈H

(Ln−2(h) + Ln−1(h) + Ln(h)) ≥

|C|
e
∑

t=e−1





(n

t

)

−
e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j





(

(n − e + 1

2

)

−
(e + 2

2

)

A(n − (e − 1), 2e + 2, e + 2)

)

+



2n − |C|V (n, e) − |C|
e
∑

t=0





(n

t

)

−
e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j









×
(

1 +
(n + 1

2

)

−
(e + 2

2

)

A(n + 1, 2e + 2, e + 2)

)

.

By Corollary 1, we have

Ln−2 + Ln−1 + Ln = 2n

(

(n + 1

2

)

+ 1

)

+ |C|





n
∑

i=n−2

U(C, i) − 2V (n, e)(
(n + 1

2

)

+ 1))



 ,

and hence as in the proof of Theorem 4.2 we have

2n
(e + 2

2

)

A(n + 1, 2e + 2, e + 2) ≥ |C|(2V (n, e)
(e + 2

2

)

A(n + 1, 2e + 2, e + 2) −
n
∑

i=n−2

U(C, i)

+
(n + 1

e

)

(

(n + 1 − e

2

)

−
(e + 2

2

)

A(n − (e − 1), 2e + 2, e + 2)

)

+

e−2
∑

t=0

e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j

(

1 + n +
(n

2

)

−
(e + 2

2

)

A(n + 1, 2e + 2, e + 2)

)

+
e
∑

t=e−1

e+t
∑

i=0

An−i

e
∑

j=0

pn−i
n−t,j(1 + e(n − e) +

(e + 1

2

)

−
(e + 2

2

)

(A(n + 1, 2e + 2, e + 2)

−A(n − e + 1, 2e + 2, e + 2)))).

The theorem follows now by elementary algebraic manipulation on the last formula.
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Corollary 3. If C is an (n, 3) code with inner distribution {Ai}
n
i=0 then

|C| ≤
2n

2n + 2 +
(n+1)(n(n−1)

6 −A(n,4,3))
A(n+1,4,3) − S2(1,n)

3A(n+1,4,3)

,

where

S2(1, n) = 12(An−4 + An−3) + (3(n − 1) + 6(A(n + 1, 4, 3) − A(n, 4, 3)))(An−2 + An−1)

+ 3(n + 1)(A(n + 1, 4, 3) − A(n, 4, 3))An .

4.2. The linear programming bound. One of the most common methods to
obtain upper bounds on A(n, d) is to apply the linear programming bound of Del-
sarte [5, 6]. Likewise, the general technique of linear programming can be used to
bound any combination of the coefficients of the inner distribution as will be done
in the next subsection. We will proceed in describing the method similarly to the
description in Best and Brouwer [3].

Recall that, throughout this section, we only deal with the binary Hamming
scheme. If C is an (n, 2e + 1) code with inner distribution {Ai}

n
i=0, the non-

normalized dual inner distribution {Bi}
n
i=0 is defined by

Bk =

n
∑

i=0

AiPk(i),(32)

where

Pk(i) =

k
∑

j=0

(−1)j

(

i

j

)(

n − i

k − j

)

is the Krawtchouk polynomial of degree k. It was proved by Delsarte [6] that
Bk ≥ 0 for 0 ≤ k ≤ n. Since the Krawtchouk polynomials satisfy the following
orthogonality relation [11]

n
∑

k=0

Pk(i)Pj(k) = 2nδij ,

we have (see [3])

n
∑

k=0

BkPj(k) =

n
∑

k=0

n
∑

i=0

AiPk(i)Pj(k) =

n
∑

i=0

Ai

n
∑

k=0

Pk(i)Pj(k) = 2nAj .(33)

Since P0(i) ≡ 1 it follows from (32) that

B0 =
n
∑

i=0

Ai = |C| .

Therefore, by (33) and since Aj = 0 for 1 ≤ j ≤ 2e, 0 ≤ Aj ≤ A(n, 2e + 2, j) for
2e + 1 ≤ j ≤ n, we have:

Theorem 4.4.

A(n, 2e + 1) ≤ ⌊max{B0}⌋ ,

subject to constraints
n
∑

k=0

Bk = 2n,
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n
∑

k=0

BkPj(k) = 0 for 1 ≤ j ≤ 2e,

0 ≤

n
∑

k=0

BkPj(k) ≤ 2nA(n, 2e + 2, j) for 2e + 1 ≤ j ≤ n.

and Bk ≥ 0 for 0 ≤ k ≤ n.

If C is an even weight code, we can reduce the number of variables and linear con-
straints from n+1 to ⌈(n+1)/2⌉, using the following properties of the Krawtchouk
polynomials [11]:

Pn−k(i) = (−1)iPk(i)(34)

Pk(i) = (−1)kPk(n − i).(35)

Since in the even weight code Ai = 0 for odd i we obtain from (32) and (34)

Bn−k =

⌊n/2⌋
∑

i=0

A2iPn−k(2i) =

⌊n/2⌋
∑

i=0

A2iPk(2i) = Bk.(36)

If n is an odd integer then by (33), (36), and (35) we have

2nAk =

n
∑

j=0

BjPk(j) =

(n−1)/2
∑

j=0

BjPk(j) +

n
∑

j=(n+1)/2

BjPk(j)

=

(n−1)/2
∑

j=0

Bj(Pk(j) + Pk(n − j)) = (1 + (−1)k)

(n−1)/2
∑

j=0

BjPk(j) .

Similarly, if n is an even integer, then

2nAk =

n
∑

j=0

BjPk(j) =

(n−2)/2
∑

j=0

BjPk(j) + Bn/2Pk(n/2) +

n
∑

j=(n+2)/2

BjPk(j)

= (1 + (−1)k)

n/2
∑

j=0

B̂jPk(j),

where B̂j = Bj for 0 ≤ j ≤ (n − 2)/2 and B̂n/2 = 1
2Bn/2. Therefore we have

Lemma 4.5. If C is an (n, 2e+2) even weight code with inner distribution {Ai}
n
i=0,

then for any integer k, 0 ≤ k ≤ ⌊n/2⌋,

⌊n/2⌋
∑

j=0

B̂jP2k(j) = 2n−1A2k,

where B̂j = Bj for 0 ≤ j ≤ ⌊n/2⌋ − 1 and

B̂⌊n/2⌋ =

{

B(n−1)/2 if n is odd ,
1
2Bn/2 if n is even .

Since any code with even distance can be made an even weight code, we have
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Corollary 4.

A(n, 2e + 2) ≤ ⌊max{B̂0}⌋ ,

subject to constraints

⌊n/2⌋
∑

k=0

B̂k = 2n−1,

⌊n/2⌋
∑

k=0

B̂kP2j(k) = 0 for 1 ≤ j ≤ e,

0 ≤

⌊n/2⌋
∑

k=0

B̂kP2j(k) ≤ 2n−1A(n, 2e + 2, 2j) for e + 1 ≤ j ≤ ⌊n/2⌋ ,

and B̂k ≥ 0 for 0 ≤ k ≤ ⌊n/2⌋.

In some cases we will add more constraints to obtain some specific bounds as in
[4], [8], [15], [19].

4.3. Bounds on A(n, 3) derived by linear programming. Corollaries 2 and 3
do not give an explicit bound on A(n, 3). To obtain explicit bounds from these two
corollaries we will use linear programming to find upper bounds on S1(1, n) and
S2(1, n) of the (n, 3) code C. Since we now wish to analyze an even weight code, it
follows that we have to take the extended code of C. Hence, we will have to make
small appropriate changes when we use Corollaries 2 and 3.

Lemma 4.6. If C is an even weight (n, 4) code, n ≡ 11 (mod 12), with inner
distribution {Ai}

n
i=0, then

(37) 6An−3 + 3(n − 1)An−1 ≤
(n − 2)(n − 1)(n + 4)

n + 2
.

Proof. Let C be an even weight (n, 4) code, n ≡ 11 (mod 12). Its inner distribution
{Ai}

n
i=0 must satisfy







A0 = 1,
A2 = 0,
An−3 + (A(n, 4, 3) − A(n − 1, 4, 3))An−1 ≤ A(n, 4, 3),

where the values of A(n, 4, 3) are given by Theorem 5.1 and the last inequality is
clearly valid for even weight (n, 4) codes [2].

Our goal is to maximize 6An−3 + 3(n − 1)An−1. By Lemma 4.5 it is equivalent
to solve the following linear programming problem:

maximize 6
∑(n−1)/2

j=0 Bj

(

Pn−3(j) + n−1
2 Pn−1(j)

)

,

subject to


























∑(n−1)/2
j=0 Bj = 2n−1,

∑(n−1)/2
j=0 BjP2(j) = 0,

∑(n−1)/2
j=0 Bj

(

Pn−3(j) + n−3
2 Pn−1(j)

)

≤ n2−n−8
6 · 2n−1 ,
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and Bj ≥ 0, for 0 ≤ j ≤ (n − 1)/2.

We will solve this linear programming problem by using the simplex method
(we will use the definitions as in [13]). We will add a slack variable to convert
the problem into standard form. Denote g(j) = −

(

Pn−3(j) + n−1
2 Pn−1(j)

)

and

f(j) = Pn−3(j) + n−3
2 Pn−1(j). The standard form of the problem is:

minimize 6
∑(n−1)/2

j=0 g(j)xj

subject to Ax = b

and x ≥ 0,

where

A =





1 1 · · · 1 1 1 0
P2(0) P2(1) · · · P2((n − 5)/2) P2((n − 3)/2) P2((n − 1)/2) 0
f(0) f(1) · · · f((n − 5)/2) f((n − 3)/2) f((n − 1)/2) 1



 ,

x = (x0, x1, · · · , x(n−1)/2, x(n+1)/2)
T , xj = Bj for 0 ≤ j ≤ (n − 1)/2, and

b = 2n−1(1, 0, n2−n−8
6 )T .

Let

T =





t11 t12 t13
t21 t22 t23
t31 t32 t33



 =















− 6
(n+1)(n+2)(n−3) 0 6

(n+1)(n+2)(n−3)

(n−1)2n
8(n+2)(n−3)

1
4

−3(n−1)
4(n+2)(n−3)

−(n2−6n−19)n
8(n+1)(n+2) − 1

4
3(n+3)

4(n+1)(n+2)















,

Ã = TA, and b̃ = Tb. Hence, we have the following linear programming problem:

minimize 6
∑(n−1)/2

j=0 g(j)xj

subject to Ãx = b̃

and x ≥ 0,

where

Ã =





1 c11 · · · c1k · · · c1(n−5)/2 0 0 t13
0 c21 · · · c2k · · · c2(n−5)/2 1 0 t23
0 c31 · · · c3k · · · c3(n−5)/2 0 1 t33



 , b̃ = 2n−1

















n2−n−14
(n−3)(n+1)(n+2)

n−1
(n−3)(n+2)

n2+n−3
(n+1)(n+2)

















,

c1k =











(n+2−2k)(n+1−2k)(n−3−2k)
(n+2)(n+1)(n−3) if k is even

−(n+3−2k)(n−1−2k)(n−2−2k)
(n+2)(n+1)(n−3) if k is odd

c2k =











k(n+1−2k)(7+2k−2n−2kn+n2)
4(n+2)(n−3) if k is even

(n−1−2k)(n−k)(−7+2k−2kn+n2)
4(n+2)(n−3) if k is odd
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c3k =











−k(n−3−2k)(7−6k+6n−2kn+n2)
4(n+2)(n+1) if k is even

−(n+3−2k)(n−k)(−7−6k−2kn+n2)
4(n+2)(n+1) if k is odd.

Thus we have the following basic feasible solution:

x = 2n−1

(

n2 − n − 14

(n − 3)(n + 1)(n + 2)
, 0, 0, · · · , 0,

n − 1

(n − 3)(n + 2)
,

n2 + n − 3

(n + 1)(n + 2)
, 0

)T

.

We want to show that this solution is optimal. We will use the Optimality Condition
Theorem [13, p. 43]. In our case, the solution is optimal if the following n+3

2
conditions hold:

t13 · g(0) + t23 · g((n − 3)/2) + t33 · g((n − 1)/2) ≤ 0(38)

and

c1k · g(0) + c2k · g((n − 3)/2) + c3k · g((n − 1)/2)− g(k) ≤ 0,(39)

for 0 ≤ k ≤ (n − 1)/2.

First,

g(0) = −

(

n + 1

3

)

, g((n − 3)/2) = −4, g((n − 1)/2) = 0,

t13 · g(0) + t23 · g((n − 3)/2) + c33 · g((n − 1)/2) = −
n − 1

n + 2
< 0,

and therefore condition (38) is satisfied.
Next, for even k we have

c1k · g(0) + c2k · g((n − 3)/2) + c3k · g((n − 1)/2) − g(k) = −k(n + 1 − 2k)(n − 3 − 2k)

n + 2
,

and for odd k we have

c1k · g(0) + c2k · g((n − 3)/2) + c3k · g((n − 1)/2) − g(k) =
(k − n)(n + 3 − 2k)(n − 1 − 2k)

n + 2
.

Since n ≡ 11(mod 12), these expressions are not positive and, therefore, condition
(39) is satisfied.
The optimal value of the objective function in the linear programming problem is

−6 · 2n−1

(

n2 − n − 14

(n − 3)(n + 1)(n + 2)
·
(n + 1

3

)

+
4(n − 1)

(n − 3)(n + 2)

)

= −2n−1 (n − 2)(n − 1)(n + 4)

n + 2
,

which implies

6An−3 + 3(n − 1)An−1 ≤
(n − 2)(n − 1)(n + 4)

n + 2
.

By linear programming in Lemma 4.6, the “code” C which attains the maximum
of 6An−3 + 3(n − 1)An−1 has size

B0 =
n2 − n − 14

(n − 3)(n + 1)(n + 2)
2n−1 =

2n−1

n + 1 + 8
n+2 + 32(n+4)

(n+2)(n2−n−14)

.
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By substituting (37) in Corollary 2 for n ≡ 11(mod 12) we infer that

A(n − 1, 3) ≤
2n−1

n + 1 + 8
n+2

.

Therefore, we would like to know if a code with size greater than n2−n−14
(n−3)(n+1)(n+2)2

n−1

can exist, subject to the constraints in Lemma 4.6. Among all codes with size greater

than n2−n−14
(n−3)(n+1)(n+2)2

n−1 we are interested in those for which 6An−3+3(n−1)An−1

is maximum.

Theorem 4.7. If m ≡ 10 (mod 12) then

A(m, 3) ≤
2m

m + 2 + 8
m+3

(

1 + 48(m+5)

m3+8m2+5m−126+(m+3)
√

m4+10m3+5m2−292m+484

) .

Proof. Let n ≡ 11 (mod 12) and consider the following linear programming problem:

maximize 6
∑(n−1)/2

j=0 Bj

(

Pn−3(j) + n−1
2 Pn−1(j)

)

subject to














































∑(n−1)/2
j=0 Bj = 2n−1,

∑(n−1)/2
j=0 BjP2(j) = 0,

∑(n−1)/2
j=0 Bj

(

Pn−3(j) + n−3
2 Pn−1(j)

)

≤ n2−n−8
6 · 2n−1 ,

B0 ≥
(

n2−n−14
(n−3)(n+1)(n+2) + τ

)

2n−1,

and Bj ≥ 0, 0 ≤ j ≤ (n − 1)/2,
where τ is nonnegative parameter.

Again, we will solve this linear programming problem by using the simplex
method. We will add a slack variable and a surplus variable to convert the prob-
lem into standard form. Denote g(j) = −

(

Pn−3(j) + n−1
2 Pn−1(j)

)

and f(j) =

Pn−3(j) + n−3
2 Pn−1(j). The standard form of the problem is:

minimize 6
∑(n−1)/2

j=0 g(j)xj

subject to Ax = b

and x ≥ 0,

where

A =









1 1 · · · 1 1 1 0 0
P2(0) P2(1) · · · P2((n − 5)/2) P2((n − 3)/2) P2((n − 1)/2) 0 0
f(0) f(1) · · · f((n − 5)/2) f((n − 3)/2) f((n − 1)/2) 1 0

1 0 · · · 0 0 0 0 −1









,

x = (x0, x1, · · · , x(n−1)/2, x(n+1)/2, x(n+3)/2)
T , xj = Bj for 0 ≤ j ≤ (n − 1)/2, and

b = 2n−1(1, 0, n2−n−8
6 ,

(

n2−n−14
(n−3)(n+1)(n+2) + τ

)

)T .
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Analogous to the proof of Lemma 4.6 we obtain the following optimal basic
feasible solution

x = 2n−1



























































n2−n−14
(n−3)(n+1)(n+2)

+ τ

n+2
(n−4)

τ

0
...
0

(n−1)(4n−16−τ(n4−3n3−9n2+17n+30))
4(n−4)(n−3)(n+2)

4n3−12n2−28n+48+τ(n5−18n3−26n2+17n+26)
4(n−4)(n+1)(n+2)

0
0



























































.

Since Bj ≥ 0, 0 ≤ j ≤ (n − 1)/2, it follows that 0 ≤ τ ≤ 4(n−4)
(n−3)(n+2)(n2−2n−5) .

The optimal value of the objective function in the linear programming problem
is:

−2n−1 (n − 1)((n − 4)(n − 2)(n + 4) − 6τ(n − 3)(n + 1)(n + 2))

(n − 4)(n + 2)
,

which implies

6An−3 + 3(n − 1)An−1 ≤
(n − 2)(n − 1)(n + 4)

n + 2
− 6τ

(n − 1)(n − 3)(n + 1)

n − 4
.(40)

Note that for τ = 0 the value of the objective function coincides with the one found
in Lemma 4.6. By substituting (40) in Corollary 2 for n ≡ 11(mod 12) we infer that

A(n − 1, 3) ≤
2n−1

n + 1 + 8
n+2 + 6τ (n−3)(n+1)

n−4

.(41)

By linear programming, the “code” C which attains the maximum of 6An−3 +
3(n − 1)An−1 has size

B0 =

(

n2 − n − 14

(n − 3)(n + 1)(n + 2)
+ τ

)

2n−1 .(42)

It is easy to see that the RHS of (41) is continuous monotonic decreasing function
of τ and the RHS of (42) is a continuous monotonic increasing function of τ on

the interval [0, 4(n−4)
(n−3)(n+2)(n2−2n−5) ]. Therefore, upper bounds on A(n − 1, 3) are

obtained as long as

(

n2 − n − 14

(n − 3)(n + 1)(n + 2)
+ τ

)

2n−1 ≤
2n−1

n + 1 + 8
n+2 + 6τ (n−3)(n+1)

n−4

.(43)
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Hence, we maximize τ in the given interval, such that (43) is satisfied, and obtain
τ∗,

τ∗ =
64(n − 4)(n + 4)

(n − 3)(n + 1)(n + 2)(n3 + 5n2 − 8n − 124 + (n + 2)
√

n4 + 6n3 − 19n2 − 276n + 772)
.

(44)

Since we are interested in n ≡ 11(mod 12), one can verify that

τ∗ ∈ [0, 4(n−4)
(n−3)(n+2)(n2−2n−5) ] for n ≥ 11. The theorem follows by substituting (44)

in (41).

We turn our attention to S2(1, n).

Lemma 4.8. If C is an even weight (n, 4) code, n ≡ 10 (mod 12), with inner
distribution {Ai}

n
i=0, then

(45) 12An−4 + (4n − 10)An−2 +
n(n − 4)

2
An ≤

n(n2 − 4n + 2)

2
.

Proof. Let C be an even weight (n, 4) code, n ≡ 10 (mod 12). Its inner distribution
{Ai}

n
i=0 must satisfy







A0 = 1,
A2 = 0,
An ≥ 0.

Our goal is to maximize 12An−4 + (4n − 10)An−2 + n(n−4)
2 An. By lemma 4.5 it is

equivalent to solve the following linear programming problem:

maximize
∑n/2

j=0 B̂j

(

12Pn−4(j) + (4n − 10)Pn−2(j) + n(n−4)
2 Pn(j)

)

,

subject to


























∑n/2
j=0 B̂j = 2n−1,

∑n/2
j=0 B̂jP2(j) = 0,

∑n/2
j=0 B̂jPn(j) ≥ 0 ,

and B̂j ≥ 0, for 0 ≤ j ≤ n
2 .

We will solve this linear programming problem similar to the solution in Lemma
4.6 (a complete solution appears in [16]). The optimal value of the objective function
in the linear programming problem is 2n−1 1

2n(n2 − 4n + 2), which implies

12An−4 + (4n − 10)An−2 +
n(n − 4)

2
An ≤

n(n2 − 4n + 2)

2
.

By linear programming in Lemma 4.8, the “code” C which attains the maximum

of 12An−4 + (4n − 10)An−2 + n(n−4)
2 An has size

B̂0 =
2n−1

n + 2
.
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By substituting (45) in Corollary 3 for n ≡ 10(mod 12) we infer that

A(n − 1, 3) ≤
2n−1

n + 2 + 4
(n−1)2−3

.

Therefore, there is no code with cardinality 2n−1

n+2 . Hence, we will search for a

code with cardinality at most 2n−1

n+2+ 4
(n−1)2−3

subject to the constraints in Lemma

4.8. Among all codes with the size at most 2n−1

n+2+ 4
(n−1)2−3

, we are interested in those

for which 12An−4 + (4n − 10)An−2 + n(n−4)
2 An is maximum.

Theorem 4.9. If m ≡ 9 (mod 12) then

A(m, 3) ≤ 2m

m + 3 + 4
m2−3

(

1 +
16(m−1)2

m3−5m2+13m−13+
√

m6−10m5+51m4−156m3+427m2−594m+297

) .

Proof. Let n ≡ 10 (mod 12) and consider the following linear programming problem:

maximize
∑n/2

j=0 B̂j

(

12Pn−4(j) + (4n − 10)Pn−2(j) + n(n−4)
2 Pn(j)

)

subject to














































∑n/2
j=0 B̂j = 2n−1,

∑n/2
j=0 B̂jP2(j) = 0,

∑n/2
j=0 B̂jPn(j) ≥ 0 ,

B̂0 ≤
(

1
n+2 − τ

)

2n−1 ,

and B̂j ≥ 0, 0 ≤ j ≤ n
2 ,

where τ is nonnegative parameter.
Analogous to the proof of Theorem 4.7 we obtain

12An−4 + (4n − 10)An−2 +
n(n − 4)

2
An ≤

n(n2 − 4n + 2)

2
− 4τ(n − 2)2(n + 2) .

(46)

Note that for τ = 0 the value of the objective function coincides with the one
found in Lemma 4.8. By substituting (46) in Corollary 3 for n ≡ 10(mod 12) we
infer that

A(n − 1, 3) ≤
2n−1

n + 2 + 4
(n−1)2−3 + 8τ (n−2)2(n+2)

n2−2n−2

.(47)

By linear programming, the “code” C which attains the maximum of 12An−4 +

(4n − 10)An−2 + n(n−4)
2 An has size

B0 =

(

1

n + 2
− τ

)

2n−1.(48)

It is easy to see that the RHS of (47) and the RHS of (48) are continuous monotonic
decreasing functions of τ , 0 ≤ τ < 1

n+2 . Therefore, upper bounds on A(n−1, 3) are
obtained as long as
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(

1

n + 2
− τ

)

2n−1 ≥
2n−1

n + 2 + 4
(n−1)2−3 + 8τ (n−2)2(n+2)

n2−2n−2

.(49)

Hence, we maximize τ , such that (49) is satisfied, and obtain τ∗,

τ∗ =
8

(n + 2)
(

n3 − 8n2 + 26n − 32 +
√

n6 − 16n5 + 116n4 − 480n3 + 1316n2 − 2176n + 1536
) .

(50)

Since we are interested in n ≡ 10(mod 12), one can verify that τ∗ ∈ [0, 1
n+2 ] for

n ≥ 10. The theorem follows by substituting (50) in (47).

For the specific details of the proofs of Lemma 4.8 and Theorem 4.9 the reader
is referred to [16].

5. Summary of explicit new bounds

5.1. Bounds on A(n, 3). The known upper bounds on A(n, 3) are summarized in
the following table:

A(n, 3) ≤































2n/(n + 1) if n ≡ 3 or 7(mod 12) (1)
2n/(n + 1 + 8

n−1 ) if n ≡ 11(mod 12) (2)

2n/(n + 2) if n ≡ 2 or 6(mod 12) (2)
2n/(n + 2 + 2n+28

n2+n−8) if n ≡ 10(mod 12) (3)

2n/(n + 3) if n ≡ 1(mod 4) [3]
2n/(n + 4) if n ≡ 0(mod 4) [3]

Some of these bounds are obtained by using the known bounds on sizes of con-
stant weight codes A(n, 4, 3) and A(n, 4, 4) [14].

Theorem 5.1.

A(n, 4, 3) =



















n(n−2)
6 if n ≡ 0 or 2(mod 6)

n(n−1)
6 if n ≡ 1 or 3(mod 6)

n2−2n−2
6 if n ≡ 4(mod 6)

n2−n−8
6 if n ≡ 5(mod 6) .

Theorem 5.2.

A(n, 4, 4) =











n(n−1)(n−3)
24 if n ≡ 1 or 3(mod 6)

n(n−1)(n−2)
24 if n ≡ 2 or 4(mod 6)

n(n2−3n−6)
24 if n ≡ 0(mod 6) ,

A(n, 4, 4) ≤

{

n3−4n2+n−6
24 if n ≡ 5(mod 12)

n3−4n2+n−18
24 if n ≡ 11(mod 12) .

In Theorem 4.7 we have improved the bound for n ≡ 10 (mod 12) and obtain
that

A(n, 3) ≤
2n

n + 2 + 8
n+3

(

1 + 48(n+5)

n3+8n2+5n−126+(n+3)
√

n4+10n3+5n2−292n+484

) .
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In Theorem 4.9 we have improved the bound for n ≡ 9 (mod 12) and obtain that

A(n, 3) ≤ 2n

n + 3 + 4
n2−3

(

1 +
16(n−1)2

n3−5n2+13n−13+
√

n6−10n5+51n4−156n3+427n2−594n+297

) .

Some specific bounds which were obtained from Theorems 4.7 and 4.9 are
A(21, 3) ≤ 87333 and A(22, 3) ≤ 172361 (compared to 87376 and 173015 in [15]).
By maximizing S1(e, n) defined in Theorem 4.2 subject to constraints of Theorem
4.4 and similarly to the arguments in the proof of Theorem 4.9, we obtain A(24, 5) ≤
47538 (compared to 47998 in [18]).

5.2. Bounds on A(n, d, w). Our results can be applied to any metric association
scheme. As an example we consider the Johnson scheme. In this scheme X is the
set of all binary vectors of length n and weight w. Without loss of generality we
assume that w ≤ n

2 . The distance between two vectors is defined to be the half
of the Hamming distance between them. In this scheme the number of relations is
w + 1. One can verify, that v =

(

n
w

)

, vi =
(

w
i

)(

n−w
i

)

, and pk
i,j is given by

pk
i,j =

w−k
∑

l=0

(

w − k

l

)(

k

w − i − l

)(

k

w − j − l

)(

n − w − k

i + j + l − w

)

.

Denote by T (w1, n1, w2, n2, d) the maximum number of binary vectors of length
n1 + n2, having mutual Hamming distance of at least d, where each vector has
exactly w1 ones in the first n1 coordinates and exactly w2 ones in the last n2

coordinates. Tables of the best known upper bounds on T (w1, n1, w2, n2, d) are
given in [1].

By substituting

max
h∈H

{NC(h, C, e + 1)} ≤ T (e + 1, w, e + 1, n − w, 4e + 2)

in (19), we obtain the following bound.

Theorem 5.3.

A(n, 4e + 2, w) ≤

(

n
w

)

∑e
i=0

(

w
i

)(

n−w
i

)

+
( w

e+1)(
n−w

e+1 )−(2e+1
e )2

max{A2e+1}
T (e+1,w,e+1,n−w,4e+2)

,

where max{A2e+1} is taken subject to Delsarte’s linear constraints for Johnson
scheme (see [14, Theorem 12, p. 666] ).

By applying Theorem 5.3 for e = 1 and similarly to the arguments in the proofs
of Theorems 4.7 and 4.9 we obtain the following improvements (the values in the
parentheses are the best bounds previously known [1], [18]): A(19, 6, 7) ≤ 519 (520),
A(22, 6, 11) ≤ 5033 (5064), A(26, 6, 11) ≤ 42017 (42075).
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